| |

Advancing Electrocaloric Research with FLIR Thermal Imaging at Queen’s University Belfast

March 11, 2025

Advancing Electrocaloric Research with FLIR Thermal Imaging at Queen’s University Belfast

At Queen’s University Belfast, researchers leveraged FLIR’s A8583 cooled mid-wave infrared (MWIR) camera and 5x microscope bayonet lens, and FLIR Research Studio software to investigate the electrocaloric effect—temperature changes in dielectric materials under an electric field.

This combination of high-speed thermal imaging and advanced analysis tools enabled real-time observation of thermal fluctuations, providing deeper insights into material behavior. The ability to visualize and quantify these temperature changes with precision supports the development of solid-state cooling solutions for electronics and sustainable refrigeration.

Challenge
Queen’s University Belfast sought to investigate the electrocaloric effect, a phenomenon where dielectric materials experience temperature fluctuations under an applied electric field. Understanding this effect is crucial for developing energy-efficient, solid-state cooling systems that could revolutionize electronics cooling and sustainable refrigeration. However, capturing these rapid thermal changes required a high-speed, highly sensitive thermal imaging solution capable of detecting minute temperature variations in real time.

Solution

Advancing Electrocaloric Research with FLIR Thermal Imaging at Queen’s University Belfast

To address this challenge, Butler Technologies provided Queen’s University Belfast with a FLIR A8583 MWIR cooled camera and 5x microscopic optic—a high-speed thermal imaging system designed for scientific applications—along with FLIR Research Studio software for advanced data analysis. The researchers used this combination of cutting-edge hardware and software to:
  •Apply a square wave voltage to various samples, including thin wires and multilayer plates
  •Observe real-time thermal fluctuations in dielectric materials
  •Detect and analyze thermal responses
  •Capture transient thermal changes

Results

Advancing Electrocaloric Research with FLIR Thermal Imaging at Queen’s University Belfast
FLIR A8583 thermal camera, paired with FLIR Research Studio, capturing real-time electrocaloric temperature changes in dielectric materials at Queen’s University Belfast, supporting research in energy-efficient solid-state cooling systems.

Using the FLIR A8583 thermal camera and FLIR 5X microscopic optic, researchers at Queen’s University Belfast successfully identified thermal fluctuations at the same frequency as the electrical stimulus, confirming the electrocaloric effect in real-time. This precise ability to capture transient thermal changes enabled a more detailed examination of how electrocaloric materials respond under different conditions, offering insights into their feasibility for solid-state cooling technologies.

The integration of a high-speed cooled thermal camera significantly improved measurement accuracy. With the Stirling engine cooling the detector to approximately 77 Kelvin, the system achieved greater sensitivity and a higher frame rate, allowing for precise thermal photon detection. This capability is particularly valuable for scientific applications requiring the measurement of subtle temperature variations with extreme precision.

These findings contribute to the ongoing exploration of electrocaloric materials for next-generation cooling solutions, with potential applications in electronics thermal management, sustainable refrigeration, and materials science. As industries continue to seek energy-efficient thermal technologies, FLIR’s advanced imaging solutions remain essential for pushing the boundaries of scientific research.

More Information

Explore how FLIR thermal imaging enhances scientific research. Visit FLIR Science Applications to learn more.

Related Story

Ensuring Safety and Efficiency with FLIR Thermal Monitoring for Battery Energy Storage Systems

Battery Energy Storage Systems (BESS) are essential for storing renewable energy and ensuring grid stability. However, their implementation comes with inherent risks, particularly related to lithium-ion battery fires.

Related Articles


Latest Articles


Featured Article

Revolutionizing Material Movement with Autonomous Mobile Robots

Revolutionizing Material Movement with Autonomous Mobile Robots

In today’s fast-paced manufacturing and logistics industries, the need for efficient and flexible material movement solutions has never been greater. Traditional methods like conveyor systems, forklifts, and manual pushcarts have served us well, but they come with limitations.

That’s why Omron is thrilled to announce the launch of their game-changing MD Series of Autonomous Mobile Robots (AMRs). Read more


Products

  • Safety Locking Device PSENmlock from Pilz

    April 29, 2025 Safe interlocking and safe guard locking in one product! The safety locking device PSENmlock offers safe interlocking and safe guard locking for personnel and process protection, up to the highest category PL e. Safe guard locking is enabled by the dual-channel control on the guard locking device. As such, the switch is particularly suitable… Read More…

  • Rockwell Automation Unveils Powerful New Service to Detect and Respond to OT Cyber Threats

    April 28, 2025 New offering delivers 24/7 real-time threat detection and response to combat rising cybersecurity risks in operational technology environments. Rockwell Automation, Inc., one of the world’s largest companies dedicated to industrial automation and digital transformation, announced on April 28th its Security Monitoring and Response service, which is purpose-built to deliver continuous, real-time monitoring of… Read More…