Hybrid Approaches Increase Efficiency in Production and Logistics by SICK

MC Hybrid Approaches Increase Efficiency in Production and Logistics 1 400x275

August 10, 2022

 

Robots and automated guided vehicle systems are taking on increasingly complex tasks and ensuring high availability and productivity, at least in theory. However, disruptions often occur in the process. Solutions are provided by intelligent, hybrid and, above all, holistic systems based on sensors from different technologies.

A wide variety of safety and localization solutions are used in intralogistics transport processes: laser scanners installed on automated guided vehicles (AGVs) prevent collisions and help automated vehicles navigate. To make this a reality, companies can choose from a large modular system of optical-magnetic line guidance systems, grid localization and contour localization based on aspects of economic efficiency and other specific circumstances. Each of these technologies has its own advantages as well as application-specific limitations.

If, for example, optical or magnetic line guidance is used due to a static route network or other frame parameters, it becomes costly to maintain and repair the track on the hall floor. This is because tracks, once recorded, are permanent. The AGVs cannot avoid obstacles and damage causes the mobile platforms to come to a standstill, resulting in productivity losses. Changes or extensions to the routes also take time and are difficult to implement during operation.

Intelligent combination of sensor technology: simple line guidance and highly flexible contour localization

The solution is a hybrid approach, an intelligent combination of line guidance sensors with the safety sensors installed on the AGV. When tracking the physical guidelines, laser scanners continuously generate measurement data which creates a digital map from the surrounding contour using software. If the vehicle loses the line, the localization software detects this and switches to LiDAR-based contour localization. The AGV remains moving without interruption and productivity remains high.

This combination unites the advantages of easy-to-apply line guidance with highly flexible contour localization – and without initial mapping of the environment by specialized personnel. It is possible to combine the flexibility of contour localization when navigating in highly versatile environments with the repeatability of line guidance in long aisles or during docking operations. Reflectors make the system even more reliable in this respect.

Manual management no longer necessary: the safety sensor technology on the AGV calculates field geometries more effectively

For good scalability and a high degree of modularity, an extensive range of sensor technology from different technologies is required, as is an equally high-performance integration platform and software modules tailored to the application. This is the only way to handle the large number of applications that ensure reliable performance of the mobile platforms and a smooth material flow. However, the rigid definition of protective fields to date poses a problem in the environment of mobile robotics. Users must manually calculate and manage many field geometries for the different vehicle states. The safety sensors on the AGV can solve the task more effectively using an assistance system in this area as well: by specifying a single protective field based on certain characteristic values such as maximum speed, direction of travel and braking behavior, the safety laser scanner calculates all necessary fields. This is how the protective field size is dynamically adapted to the speed of the vehicle.

A wide variety of safety and localization solutions are used in intralogistics transport processes: laser scanners installed on automated guided vehicles (AGVs) prevent collisions and help automated vehicles navigate. To make this a reality, companies can choose from a large modular system of optical-magnetic line guidance systems, grid localization and contour localization based on aspects of economic efficiency and other specific circumstances. Each of these technologies has its own advantages as well as application-specific limitations. If, for example, optical or magnetic line guidance is used due to a static route network or other frame parameters, it becomes costly to maintain and repair the track on the hall floor. This is because tracks, once recorded, are permanent. The AGVs cannot avoid obstacles and damage causes the mobile platforms to come to a standstill, resulting in productivity losses.

Changes or extensions to the routes also take time and are difficult to implement during operation. Intelligent combination of sensor technology: simple line guidance and highly flexible contour localization. The solution is a hybrid approach, an intelligent combination of line guidance sensors with the safety sensors installed on the AGV. When tracking the physical guidelines, laser scanners continuously generate measurement data which creates a digital map from the surrounding contour using software. If the vehicle loses the line, the localization software detects this and switches to LiDAR-based contour localization. The AGV remains moving without interruption and productivity remains high.

 

Watch this video for an overview of LiDAR localization: Virtual Line Navigation Extension

{videobox}a4JI5xunXkc{/videobox}

 

This combination unites the advantages of easy-to-apply line guidance with highly flexible contour localization – and without initial mapping of the environment by specialized personnel. It is possible to combine the flexibility of contour localization when navigating in highly versatile environments with the repeatability of line guidance in long aisles or during docking operations.

Reflectors make the system even more reliable in this respect. Manual management no longer necessary: the safety sensor technology on the AGV calculates field geometries more effectively. For good scalability and a high degree of modularity, an extensive range of sensor technology from different technologies is required, as is an equally high-performance integration platform and software modules tailored to the application. This is the only way to handle the large number of applications that ensure reliable performance of the mobile platforms and a smooth material flow. However, the rigid definition of protective fields to date poses a problem in the environment of mobile robotics. Users must manually calculate and manage many field geometries for the different vehicle states. The safety sensors on the AGV can solve the task more effectively using an assistance system in this area as well: by specifying a single protective field based on certain characteristic values such as maximum speed, direction of travel and braking behavior, the safety laser scanner calculates all necessary fields. This is how the protective field size is dynamically adapted to the speed of the vehicle.

Clear classification of objects

Findings from localization can also be used for intelligent adaptation of safety functions in the future. This means AGVs will not only reliably measure protective field violations, but also distances, which can be used to clearly classify objects. So, in the future, it is conceivable that mobile platforms will pass an object at undiminished speed because confusion with a moving obstacle can be ruled out.

 

Watch this video to see How data visualization speeds up troubleshooting with Augmented Reality

{videobox}SNZRP7Y6QuU{/videobox}

 

The dynamization of the protective fields based on the measurement data significantly reduces the calculation and programming required for protective field sizes. This increases safety and reduces the size of the protective fields. The risk of faulty protective field violations is minimized, and less downtime leads to higher productivity overall.

Maintaining an overview at all times: augmented reality apps reduce complexity

The apparent complexity of such highly automated systems naturally raises questions about how to control them. Intelligent graphical user interfaces are the answer. Such augmented reality apps make it possible to maintain an overview of all sensor data at all times. The user can visualize the sensor data directly on site with a smartphone and, for example, directly detect and rectify the object detection of a scanner with a stationary AGV. Calling a hotline and the associated costs and delays are a thing of the past. Systemic approaches and intuitive visualization tools ultimately ensure that the increased automation dynamics lead to an increase in productivity.

SICK Logo 300x150

 

 

 

Source

 

Related Articles


Latest Articles

  • Small Town Infrastructure is Being Retrofitted, Federal Funding Helps Drive This Change

    September 9, 2025 By Krystie Johnston Municipalities across Canada are tackling climate change. From big cities to small towns, every action counts. Densely populated metropolitan areas are usually the first places that experience infrastructure upgrades to public buildings and structures because they need to support the increased demands of a growing population. But small towns… Read More…

  • Bossard is Scaling Front Line Flexibility

    September , 2025 Experience Smart Factory Solutions that Adapt to Your Operators’ Needs at FABTECH 2025 By Krystie Johnston Bossard is bringing the future of assembly and inventory management to FABTECH 2025 from September 8 – 11. Visit them at Booth #B13000, at the North Hall in the Automation Pavilion at McCormick Place in Chicago… Read More…


Featured Article

Revolutionizing Material Movement with Autonomous Mobile Robots

Revolutionizing Material Movement with Autonomous Mobile Robots

In today’s fast-paced manufacturing and logistics industries, the need for efficient and flexible material movement solutions has never been greater. Traditional methods like conveyor systems, forklifts, and manual pushcarts have served us well, but they come with limitations.

That’s why Omron is thrilled to announce the launch of their game-changing MD Series of Autonomous Mobile Robots (AMRs). Read more


Products

  • WAGO Expands 750 Series with New Functional Safety I/O Modules

    September 12, 2025 WAGO Expands 750 Series with New Functional Safety I/O Modules WAGO is introducing three functional safety I/O modules to be used with WAGO’s PFC controllers. These new 750 Series modules have four safe inputs along with either two safe outputs at 10 A/24 VDC, or four safe outputs at 2 A/24 VDC… Read More…

  • First Controllers in Trio’s Motion-PLC Range Simplify the Design of Stand-Alone Machines

    September 10, 2025 Trio Motion Technology has launched the first controllers from its new Motion-PLC range, designed to provide advanced motion control performance with the functionality and simplicity of a PLC. The new class of controller combines high-performance motion control over EtherCAT plus logic and I/O expansion, enabling faster, simpler machine development. The first models in… Read More…