Breakthrough in Energy Harvesting

MC Breakthrough in Energy Harvesting 1 400x275

September 22, 2022

 

Wiegand energy harvester opens new windows to the Internet of Things

UBITO, a member of the FRABA family of technology companies, has announced a breakthrough in its development of Wiegand technology as an energy source for smart sensors. After more than two years of effort at FRABA’s R&D center in Aachen (Germany), a research team has demonstrated a prototype of a wireless sensor powered by Wiegand technology that could participate in an ‘Internet of Things’ (IoT) network.

The project involved the development of an exciting new Wiegand Harvester capable of capturing enough energy to power the sensor’s electronics package, including a high-efficiency ultra-wide-band radio transmitter. This achievement – a world’s first – helps to position Wiegand technology (which collects energy from movements of an external magnetic field) beside established energy harvesting techniques such as solar, piezo, or thermo-electrics as an energy source for sensor nodes in the emerging Internet of Things (also known as Industry 4.0).

“Wiegand sensors have been a core component of our encoder products for over 15 years” comments Tobias Best, global head of the UBITO startup. “While this technology has provided a highly reliable way of detecting and recording rotations in flow meters and multiturn encoders, we have always been looking forward to its wider potential, especially for energy harvesting.”

With this goal in mind, FRABA undertook a development project aimed at improving the energy output from Wiegand devices and demonstrating the possibility of self-powered sensors that could detect events and transmit data wirelessly to an IoT network. The R&D project was conducted by specialists from FRABA and Aachen’s University for Applied Science, with financial support from the German Ministry of Education and Technology. The project team succeeded in producing a new “Wiegand Harvester” – a device that could generate over fifty times more energy than commercial Wiegand sensors. Best continues:

“This level of output makes it possible to dream of energy self-sufficient sensors that can communicate data wirelessly over a significant distance.”

The team chose a window sensor system for a practical demonstration of an IoT sensor node powered by Wiegand-harvested energy. Two Wiegand harvesters and their associated electronics were mounted on the window, with bar magnets mounted on the frame. The harvesters, made up of a 21 mm long pieces of Wiegand wire surrounded by a copper coil, are the size of an AAA battery (d=7.5 mm). Whenever the window is opened or closed, the harvesters pass the magnets, triggering abrupt magnetic polarity changes in the Wiegand wires. The amount of energy delivered is largely independent of how quickly or slowly the window is moved – a key benefit of Wiegand technology. The current pulses induced by these polarity reversals generate about 10 microjoules of energy.

A key goal had been achieved: the amount of energy captured was sufficient to activate a microcontroller and collect a reading from a temperature sensor built into the system. The team added an ultra-wide-band (UWB) transmitter module that could transmit 134 bytes of data to a receiving station 60 m away. This lab demonstration, which marks a milestone towards self-sufficient Wiegand-based IoT sensor nodes, was presented in April at EnerHarv 2022 in the USA. (An annual event that focuses on the latest trends in energy harvesting.)

Best concludes: “This is a lab demonstration, not a commercial product. However, by showing the capabilities of a system made up of Wiegand devices and off-the-shelf electronic components , we hope to spark interest in the wonderful potential for this technology. With the Industrial IoT projected to grow by a factor of three over the next decade, the future is very exciting.”

 

To learn more about the Wiegand effect, click here 

 UBITO Logo 300x150

 

 

 

Related Articles

  • Humber College Receives $30 Million Gift from the Barrett Family Foundation

    Humber College Receives $30 Million Gift from the Barrett Family Foundation

    January 27, 2023 Humber College is the recipient of a $30 million gift from the Barrett Family Foundation, marking the largest single donation made to an Ontario college. Combined with their donations to Humber’s Unlimited Campaign, the Barrett Family Foundation has given a total of $42 million, making their donation the largest in Canadian college history…. Read More…


Latest Articles

  • Energy Technology Perspectives 2023

    Energy Technology Perspectives 2023

    Energy Technology Perspectives 2023 highlights major market and employment opportunities, as well as the emerging risks, for countries racing to lead the clean energy industries of today and tomorrow. The energy world is at the dawn of a new industrial age – the age of clean energy technology manufacturing – that is creating major new markets and millions of jobs but also raising new risks, prompting countries across the globe to devise industrial strategies to secure their place in the new global energy economy, according to a major new IEA report. Read More…

  • Robotics: A Dynamic and Important Sector for Cables

    Robotics: A Dynamic and Important Sector for Cables

    Robotics, a key industry: experts discuss trends, opportunities and challenges January 23, 2023 New applications in robotics are constantly emerging as the industry continues to develop new solutions to efficiently manage complex tasks. Consequently, robotics is a key industrial sector for HELUKABEL – cables and wires are, after all, indispensable in all types of robots…. Read More…


Featured Article

Access Management for Your Plant and Machinery

With PILZ’s “Identification and Access Management” portfolio, they offer you a comprehensive range of products, solutions and software for the implementation of safety as well as security tasks. Below you’ll discover more about potential applications, from simple authentication to complex access permissions, and access management through to safe operating mode selection, maintenance safeguarding and safeguarding of data and networks. Experience safety and security in one system!

This solution ensures that a machine cannot resume operation while people are still in the danger zone. The maintenance safeguarding system “key-in-pocket” is designed for machines with danger zones, which are protected by a safety fence and which staff need to access – robot cells for example. In comparison with conventional lockout-tagout (LOTO) systems, maintenance safeguarding with the key-in-pocket solution is implemented via RFID keys with corresponding permissions and a safe list in the PILZ controllers. As a result, it provides a purely electronic restart protection and makes both mechanical interlocking devices and warning tags redundant.

Read more


Products

  • New Options Added To Hammond Power Solutions’ HPS Centurion P And HPS Sentinel Lines

    Capacitor Contactor Option Available For HPS Centurion P Passive Harmonic Filter January 25, 2023 The capacitor contactor option allows the user to open and close a contact, removing the capacitors from the circuit. The user can control the contactor by providing configurable contact output from the VFD which opens at light load. Passive Harmonic Filter… Read More…

  • Festo Introduces VZXA, A Uniquely Engineered Angle Seat Valve

    January 24, 2023 The new Festo VZXA family of pneumatically actuated angle seat valves delivers installation, maintenance, operational, and inventory benefits thanks to a unique modular design. When a VZXA actuator is removed for maintenance or changeover, for example, the stem, seat, and seal stay inside the valve body, allowing the process system to remain… Read More…