Moving Into the Future with Controlled Pneumatics from Festo

MC Moving into the Future with Controlled Pneumatics from Festo 1 400

Augsut 4, 2022

The production of tires and the production of wafers seem to have absolutely nothing to do with each other. In terms of automation technology, however, they use the same technology: Controlled Pneumatics. That is why Festo has further developed compressed air technology to make pneumatics sustainable, resource-saving and energy-efficient.

In Controlled Pneumatics, Festo combines proportional technology, sensors, and control algorithms to form a control loop. These are mechatronic pneumatic systems with innovative valve and communication technology that enable digital influence in conjunction with closed-loop control based on a sensor variable. This technology creates new areas of application, especially for pressure and flow control, that push the limits of pneumatics and enable simpler, more reliable, faster, more precise, and more efficient solutions. Conventional standard pneumatics, on the other hand, are used specifically for simple applications such as point-to-point movements. It is above all the simplicity of standard pneumatics that makes it the ideal solution in many cases.

Digitized pneumatics
A prime example of a Controlled Pneumatics product is the Festo Motion Terminal VTEM, which Festo is using to digitize pneumatics. This automation platform uses piezo technology and Motion Apps that can replace over 50 individual components within a pneumatic control circuit.

When applied to tire production, there is a potential for savings in the loading processes in the curing presses: with the Motion App “Selectable pressure level”, the Festo Motion Terminal allows the green tire blank (raw tire without tread) to be gently fed into the press. The smaller the fluctuations of the handling system during loading, the more the feeding-in speed can be increased. The process for each tire is thus accelerated by several seconds. This doesn’t sound like much at first, but with roughly 1.8 billion car tires produced each year, this can result in considerable sums for each tire manufacturer. Another advantage of controlled pneumatics is that it reduces the impact forces and thus significantly increases the service life of the components used.

Less pressure = less energy
In practice, it is not just that the loading operations are accelerated, they also require less energy because pressure can be reduced, and so compressed air consumption is also decreased. In addition, calculations reveal compressed air savings of nearly 33% when comparing the movement of the horizontally installed pneumatic cylinder DSBC with standard pneumatics, and of nearly 75% when the same cylinder is installed vertically. Just for controlling the vertical and horizontal cylinders, energy savings of roughly 60% are achieved during these loading and unloading operations.

Predictive maintenance
The Motion App “Leakage diagnostics” is also used, since it simplifies maintenance and automatically monitors leakages. Malfunctions can thus be detected and pinpointed to a specific actuator using diagnostic cycles and defined threshold values. This results in a reliable basis for predictive maintenance.

Furthermore, the Festo Motion Terminal can close off the faulty air duct, thus avoiding the supply of more and more compressed air if there is a leak. The innovative automation platform thereby prevents unnecessary air consumption.

Piezo technology prevents wear
When, on the other hand, wafers need to be transported and stored in the semiconductor industry, the N2 purge system from Festo prevents oxygen from oxidizing the wafers. The cost-efficient flow controller therefore continuously supplies the atmosphere around the wafer with inert nitrogen. The flow controller, also known as the mass flow controller MFC, is based on piezo technology and integrated sensor technology.

The design of the piezo valve reduces the risk of contamination of the gas flow caused by particle abrasion over the entire service life. The peak value is around a particle size of 0.1 micrometers per switching cycle. Conventional solutions generate five times the particle content. The piezo technology used prevents wear caused by friction, thus considerably increasing the service life of the valve. In comparison to conventional solutions, this results in significant savings in operation and maintenance.

Low intrinsic energy consumption saves money
Thanks to its design, the directly operated flow controller reduces the risk of leakages. The electrical energy consumption is less than a watt. That is 80% less than with conventional solutions in both cases. The closed control loop ensures an accurate, stable and linear behaviour of the flow rate, with only minimal hysteresis. The repetition accuracy is +/-0.25% of the setpoint value.

With Controlled Pneumatics, the related digitalization and with piezo technology, Festo is taking compressed air technology to a new technological level that is resource-saving, energy-efficient and sustainable.

Source

Related Product

Controlled Pneumatics from Festo

Related Articles


Latest Articles

  • ABB Contactor Selection Guide Canada

    October 1, 2025 ABB contactors are among the most reliable electrical switching devices in industrial automation. As Canada’s leading ABB authorized distributor, Proax has helped thousands of engineers and technicians select the right ABB contactor for their applications. Whether you’re designing a new motor control panel or replacing existing equipment, choosing the right ABB contactor can… Read More…

  • 25 Advanced Motion Control Questions Answered

    October 1, 2025 Electromate has compiled a list of 25 advanced mechatronic engineering FAQs covering inertia, vibration, servo safety, control tuning, encoder resolution, and motion system design, and provided answers from their team of experts across the country. How do I model moment loading in real-world applications with offset payloads? Moment loading should be calculated… Read More…


Featured Article

Revolutionizing Material Movement with Autonomous Mobile Robots

Revolutionizing Material Movement with Autonomous Mobile Robots

In today’s fast-paced manufacturing and logistics industries, the need for efficient and flexible material movement solutions has never been greater. Traditional methods like conveyor systems, forklifts, and manual pushcarts have served us well, but they come with limitations.

That’s why Omron is thrilled to announce the launch of their game-changing MD Series of Autonomous Mobile Robots (AMRs). Read more


Products

  • PISA-M Electronic Circuit Breakers: New NEC Class 2 Compliant Variants Available

    October 6, 2025 PULS introduces new 4-channel electronic circuit breakers designed specifically for power distribution in NEC Class 2 circuits, expanding the existing PISA-M series. PISA-M enables the safe distribution of load current into four individual Class 2 circuits. This offers a cost-effective alternative to multiple individually approved NEC Class 2 compliant power supplies, reducing both acquisition costs and… Read More…

  • Meet Your PULS Team Soon at SPS 2025!

    October 6, 2025  Experience PULS’ Better Power solutions for industrial automation live Join us from 25th to 27th November 2025 at the Messezentrum Nürnberg in Hall 10, Booth 340. PULS is back at SPS 2025 in Nuremberg, with a fireworks display of innovations and a clear promise: Better Power – for your machines, your systems, your growth. Here is… Read More…