Smart Pneumatics Role in Automation, Cobots, Safety and System Efficiency

January 14, 2021

By Herman Wang, director, global business development, In-Plant Factory Automation and Linda Caron, global product manager for Factory Automation, Pneumatic Division

For today’s industrial pneumatic systems, automation and efficiency continue to be the driving factors in design. Automation in pneumatics incorporates a variety of design strategies and considerations. When it comes to industrial machinery, Industry 4.0 and the Industrial Internet of Things (IIoT) are big buzzwords, but these solutions are not fully developed yet. For design engineers working toward creating closed-loop automated systems, questions for consideration include:

  • How do you develop the next-generation Smart Factory?

  • What is the path toward a fully automated factory?

  • How can maintenance requirements be triggered without any downtime?

  • What data input can you use and how do you capture that data?

  • How do you diagnose maintenance issues at the component, system, or process level?

Smart connected pneumatics

For design engineers, smart pneumatics can mean complete flexibility; this is the ability of that component to communicate over the network, multiple uses for a single device, ease of integration and commissioning, as well as troubleshooting. Smart products are where you see the most difference in pneumatic systems. The diagnostic aspect of smart pneumatics is important to help achieve zero downtime.

The concept of zero downtime has seemed unrealistic in the past, however, technology is evolving in that direction. Incorporating sensors into pneumatics enables end-users to collect important prognostic and diagnostic data for setting alerts and getting machine feedback.

The future of smart pneumatics is a complete plug-and-play configuration that is easy to manage. For today’s smart pneumatics, design engineers can generate data and set the alerts but are not yet making fully closed-loop systems. However, this is on the horizon with end-to-end systems that can be configured with just a few clicks and the device will be able to take over, provide data and feedback into the control system that goes beyond simply allowing data dumps.

Read our white paper Innovations for Automation and Efficiency in Industrial Pneumatic Systems and gain insight into the use of smart pneumatics, designing for cobotic applications, applying safety standards, and pneumatic system efficiency.

Technology is changing–quickly

As technology evolves, seemingly almost daily, more people are migrating to networks as designers are migrating systems to the newer industrial Ethernet systems. Why? Overall, the “line” topology of the networks makes them much easier to work on and troubleshoot.

It used to be the case that each manufacturer offered the same type of components such as cylinders and FRLs. There is a large divide in the market on what is available and what functions they offer. Products today with integrated electronics offer many different functions through what is embedded. When specifying systems, design engineers should be sure to understand what is necessary for the machine and what value can be provided by the smart products that are specified.

Cobots and safety

In automotive manufacturing, robotics has been in use for more than a decade and over the years, they have shifted from being hydraulically driven to being pneumatically driven. In industrial cobot applications, collaborative robots, known as “cobots” work with humans in some way, including as an assistant or guide in a task or process. Unlike autonomous robots, cobots, do not work alone. They are designed to work with human instruction or respond to human behavior. The shift to pneumatics for robotics means that cobots are primarily pneumatically driven.

Cobots are the next big thing in industrial applications as the cost of robotics comes down and newer opportunities are being developed. Leading cobot applications include:

  • Machine tending where cobots can load and unload tools and accessories to decrease manual handling.

  • Pick and place where cobots can complete careful packing and moving, then place and position products or parts.

  • Assembly and flexible manufacturing where cobots insert parts, screwdriver, and other assembly tasks with appropriate end-of-arm tools.

  • Packaging, loading, and unloading when aided by suction or gripper attachments, cobots move finished products through packaging.

 

Safety in collaboration of manual and automated

The strict separation between the manual work of the factory worker and the automated actions of robots is becoming an increasingly gray area. Their work ranges are overlapping and merging into a collaborative working space. In doing so, humans and machines will be able to simultaneously work together on the same workpiece or component in the future—without having to be shielded from each other for safety reasons.

Due to this, safety is the largest consideration in the design of cobot applications. However, there can be some confusion on which safety standards to follow in applications with cobots due to the divide between traditional pneumatics and entering the world of robotics. As standards and their adoption vary among engineers and facilities, it is important to know which standards to apply.

For incorporating cobots into a plant, engineers must understand the required standards for the facility and compile the necessary documentation and technical file with due diligence, testing, and validation of the controls architecture.

Smart pneumatic system efficiency

Lower upfront and maintenance costs combine to make pneumatics the most popular and cost-effective choice for executing mechanical motion. New improvements in designs and efficiency of compressors, and the standard use and distribution of clean dry air in a manufacturing facility, also make pneumatics a good choice for industrial automated machinery. Smart pneumatics aim to help generate and maximize data and minimize compressed air use. Compressed air use by industrial machines is a close second to the use of electricity in terms of cost, and well ahead of other utilities such as water and natural gas in most plants and facilities. Electricity is less expensive per dollar of unit energy, but compressed air and pneumatics have many other advantages encouraging their use.

Effective pneumatic systems need properly sized, installed, and maintained components from compressors to workstations. A few wrong choices can lead to everything from wasted energy to system failures. Conversely, even seemingly small design tweaks can add up to large improvements in pneumatic system efficiency. These changes can save air, reduce costs, improve overall utilization, and reduce downtime in operation.

Source

Related Articles


Latest Articles

  • Siemens Launches Depot360: Zero-Emission Fleet Operations Solution in Canada

    May 2, 2024 Siemens is committed to helping Canadian customers manage and simplify their fleet electrification with innovative solutions, including locally-developed software. Faisal Kazi, President and CEO, Siemens Canada With transportation being the second biggest emitter of greenhouse gases and road transport responsible for almost three quarters of these emissions globally*, Siemens Smart Infrastructure has… Read More…

  • Margo: The New Open Standard Initiative for Interoperability at the Edge of Industrial Automation

    May 2, 2024 Margo is the new open standard initiative for interoperability at the edge of industrial automation. Today, industrial companies face unprecedented challenges. Manpower Group recently reported that 75% of companies in the industrial sector are currently experiencing a talent shortage. Supply chain problems, an increasingly competitive market landscape, rapidly changing customer demand, and the need to increase… Read More…


Featured Article

Revolutionizing Material Movement with Autonomous Mobile Robots

Revolutionizing Material Movement with Autonomous Mobile Robots

In today’s fast-paced manufacturing and logistics industries, the need for efficient and flexible material movement solutions has never been greater. Traditional methods like conveyor systems, forklifts, and manual pushcarts have served us well, but they come with limitations.

That’s why Omron is thrilled to announce the launch of their game-changing MD Series of Autonomous Mobile Robots (AMRs). Read more


Products

  • Festo Introduces ELGD, a New Generation of Electric Actuator for Linear Applications

    May 2, 2024 Festo introduces its newest generation of electrical Cartesian-handling-system mechanical axes. The ELGD-TB tooth belt actuators, and ELGD-BS ball screw actuators, are based on an innovative Festo design. Festo inlaid the bearings into the aluminum extrusion and extended bearings to the full width of the axis. This design enhancement enables high loads in… Read More…

  • Modern Measuring Transducer Terminal Blocks with Push-X Technology

    May 2, 2024 The energy industry in particular benefits from the XTVMEA 6 measuring transducer terminal blocks The key feature of the new XTVMEA 6 measuring transducer terminal blocks from Phoenix Contact is the automatically leading current transformer short circuit. This “make before break” function enables safe current transformer operation for all maintenance and testing tasks. The new… Read More…