| | |

Festo’s Bionic Mobile Assistant – a Robotic Helping Hand Like None Other

November 26, 2020

Advancing gripping technology is essential for promoting new uses for automated systems. Festo’s Bionic Mobile Assistant robotic helper, one of the latest reveals from the company’s Bionic Learning Network, represents a significant advance in mimicking that most amazing gripping tool of nature – the human hand.

The Bionic Mobile Assistant embodies three major subsystems: Bionic SoftHand 2.0, an upgraded version of the pneumatic gripper first presented by Festo in 2019 that mimics hand movements and actions; the DynaArm electric robot arm on which Bionic SoftHand 2.0 is mounted; and a ballbot for 360º mobility.

That makes Bionic Mobile Assistant more than a mere collaborative robot. Among many, potential uses of this concept robot, it would be perfect as a personal assistant or service robot, or for carrying out ergonomically strenuous or monotonous assembly tasks. It also could carry out simple tasks in challenging environments, like serving meals in hospitals where there is an increased risk of infection or in areas staff cannot access due to infections.

With its unique combination of force, dexterity and fine motor skills – the human hand is a true wonder of nature and a supreme challenge to adapt to mechanize. To enable the Bionic SoftHand 2.0 to carry out those movements somewhat realistically, compact valve technology, sensors, electronics and mechanical components are integrated in the tightest of spaces. The fingers and opposable thumb are made of flexible bellows structures with air chambers, surrounded by a firm yet yielding knitted fabric. This makes the hand light, adaptive and sensitive, yet capable of exerting strong force. The pneumatic fingers are actuated by a compact valve terminal, with piezo valves, mounted on the hand.

Making the thumb and index finger longer than in Bionic SoftHand 1.0 increased the lateral swivel range of both fingers. They now work well together and grip with great precision. Thanks to a 3D-printed wrist with two degrees of freedom, the hand also can move both back and forth, and left and right for a very tight gripping radius.

To increase the stability of the fingers, each air chamber contains two structural elements that act like bones. A bending sensor determines the positions of the fingertips. The hand also wears a glove with tactile force sensors, which allows it to sense the nature of the item to be gripped, and adapt its gripping force accordingly.

The hand also has a depth camera inside the wrist so it can visually detect objects and grip them, even if they are partially covered.

The Bionic SoftHand 2.0 is mounted on the electric DynaArm. The DynaArm can carry out fast and dynamic movements thanks to its lightweight design with highly integrated drive modules that weigh just one kilo. The ballbot is actually a sophisticated drive. The robot balances on it, so the Bionic Mobile Assistant can move freely in all directions. All energy supplies are on board: a battery for powering the arm and robot, and a compressed air cartridge for the pneumatic hand. The robot can work autonomously, orienting itself independently in three dimensions using two cameras.

Thanks to its modular concept, the Bionic SoftHand 2.0 also can be quickly mounted and commissioned on other robot arms. On Festo’s Bionic Cobot or the Bionic SoftArm, the gripper forms a completely pneumatic robotic system.

For more information, visit www.festo.com.

Related Articles


Latest Articles

  • Spring Spotlight: Unlock Smart I/O & Filter Performance

    June 19, 2025 Introduction As digital transformation reshapes manufacturing and warehousing, gaining actionable insights from the field and protecting sensitive assets are top priorities. Smart I/O brings intelligence to every corner of your facility, while motor protection filters shield your drives and motors from harmful voltage transients. Together, they form a robust foundation for a… Read More…

  • Feedback Devices: Exploring Linear, Rotary and Sine Encoders

    June 19, 2025 Encoders are the most widely applicable feedback devices for high-precision industrial servo systems. Learn the operating principles and appropriate applications for linear, rotary and sine encoders, as well as how to mitigate EMI/RFI noise for the most precise and reliable servo system control. Encoders: The High-Resolution Feedback Choice Encoders are characterized under… Read More…


Featured Article

Revolutionizing Material Movement with Autonomous Mobile Robots

Revolutionizing Material Movement with Autonomous Mobile Robots

In today’s fast-paced manufacturing and logistics industries, the need for efficient and flexible material movement solutions has never been greater. Traditional methods like conveyor systems, forklifts, and manual pushcarts have served us well, but they come with limitations.

That’s why Omron is thrilled to announce the launch of their game-changing MD Series of Autonomous Mobile Robots (AMRs). Read more


Products

  • Universal Robots Launches UR Studio – A New Online Simulation Tool Making it Simpler than Ever to Customize the Optimal Robot Cell

    June 24, 2025 UR Studio – showcased at the UR booth at Automatica Universal Robots (UR), one of the world’s leading collaborative robot (cobot) companies and a part of Teradyne Robotics, presented UR Studio, a powerful online simulation tool built on PolyScope X, UR’s most advanced, open and AI-ready software platform on June 24. UR Studio – showcased at the UR… Read More…

  • F3SG-SR Series Light Curtain from Omron

    June 23, 2025 Safety light curtain with improved alignment capabilities, advanced diagnostics, and reduced installation Struggles with light curtain installation, maintenance and troubleshooting result in unplanned downtime, increased costs and frustrated maintenance teams. The F3SG-SR series light curtain simplifies installation and reduces startup costs with quick alignment via 3-color Area Beam Indicators, no troublesome dead… Read More…