Festo: Learn How Solenoid Valves React to Test Pulses

MC-4-Festo-TestPulses-400.jpg

March 24, 2021

In this blog post, which is the third in Festo’s series on functional safety, we’re exploring the ways test pulses can affect solenoid valves. It is important to note that this topic pertains to an individually wired solenoid and does not apply to valve terminals utilizing bus communication, which have a varying number of solenoids that can be active at varying moments.

The electronic outputs of the safety controller and safety relay units use test pulses for diagnostic purposes. Test pulses help to detect cross circuits or check the function of the outputs relative to their switch-off capability. Depending on the manufacturer, these test pulses can have varying pulse widths of up to several milliseconds.

For example, a controller manufacturer deactivates outputs for several milliseconds in the event of an ON signal. In the event of an OFF signal, the outputs are switched on for up to 4 milliseconds to check whether they can be deactivated safely if a safety function is requested.

How does a solenoid valve react to these test pulses? If a solenoid valve is connected to a failsafe output, the test pulses can cause the valve’s LED to flicker at the same speed as the pulses. You may also hear a clicking sound in the valve, demonstrating that these test pulses do indeed affect the valve.

Many modern solenoid valves consist of a magnetic system that uses an armature to actuate a pilot valve, which actuates the working valve, which in turn actuates the drive. Even if the switching times for activation or deactivation are far higher than the duration of the test pulses, the armature reacts much earlier. In some solenoid valves, this can happen with negative test pulses, or blackout times, of just 0.1 milliseconds.

Can test pulses accidentally deactivate the solenoid valve in the event of an ON signal and negative test pulse? The reaction in the magnetic system generally indicates a reduction of the armature’s holding force, meaning that unfavorable vibration-shock conditions can occur in an unplanned activation of the pilot valve—and thus of the working valve.

Can test pulses accidentally activate the solenoid valve in the event of an OFF signal and a positive test pulse? Although positive test pulses cause the valve’s LED to flicker at the same speed as the test pulses, it is extremely rare for the pulses to cause the solenoid valve to switch. In some valves, the armature begins to move after just 0.4 milliseconds. When the machine is exposed to unfavorable vibration-shock conditions, this reaction can result in an unplanned activation of the pilot valve—and thus of the working valve.

Determining the Maximum Positive and Negative Test Pulses

In practice, it’s important to determine the maximum positive and negative test pulses, which you can find in a product’s data sheet. You must then compare these limit values to the relevant test pulses of the safe outputs used for actuation. Minimal movements caused by the test pulses can cause the magnetic system to deteriorate, which can in turn adversely affect the solenoid valve’s service life.

Test Pulse Alternatives

While there are alternatives, you should always make sure the requirements of a given performance level (PL) are met. Likewise, you must comply with the data specified in a data sheet, as well as the operating instructions.

  •    –   Your first option is to use safe output modules, such as the Festo CPX-FVDA-P2, which uses an innovative solution to detect short circuits without test pulses. (This also works with valve terminals.)
  •    –   You can also switch off the test pulses if possible.
  •    –   Thirdly, you can actuate the solenoid valve via the non-pulsed output of a standard programmable logic controller (PLC). For example, connect the normally open contact of a safety shutdown relay between the solenoid valve and the output, which guarantees the safety function when needed.

During the design phase of the safety-related elements of a control system, always contact the manufacturer of the solenoid valve and ask for the maximum pulse widths of the test pulses. At Festo, you can find information on maximum positive and negative test pulses in their data sheets.

Source

Related Articles


Latest Articles

  • The Future of Safety Networks

    October 8, 2025 How scalable safety systems are reshaping industrial automation As factories become more connected and fast-changing, traditional safety systems often fall short. Scalable safety networks offer a flexible, modular solution that helps manufacturers stay ahead on safety, compliance, and productivity. Designed for Agility Scalable safety networks are built on a modular foundation. This… Read More…

  • ABB Contactor Selection Guide Canada

    October 1, 2025 ABB contactors are among the most reliable electrical switching devices in industrial automation. As Canada’s leading ABB authorized distributor, Proax has helped thousands of engineers and technicians select the right ABB contactor for their applications. Whether you’re designing a new motor control panel or replacing existing equipment, choosing the right ABB contactor can… Read More…


Featured Article

Revolutionizing Material Movement with Autonomous Mobile Robots

Revolutionizing Material Movement with Autonomous Mobile Robots

In today’s fast-paced manufacturing and logistics industries, the need for efficient and flexible material movement solutions has never been greater. Traditional methods like conveyor systems, forklifts, and manual pushcarts have served us well, but they come with limitations.

That’s why Omron is thrilled to announce the launch of their game-changing MD Series of Autonomous Mobile Robots (AMRs). Read more


Products

  • Schneider Electric Unveils New AI Data Centre Reference Designs with NVIDIA

    October 6, 2025 Schneider Electric, a leader in the digital transformation of energy management and automation, has announced new reference designs developed with NVIDIA that significantly accelerate time to deployment and aid operators as they adopt AI-ready infrastructure solutions. The first reference design delivers the industry’s first and only critical framework for integrated power management and liquid… Read More…

  • PISA-M Electronic Circuit Breakers: New NEC Class 2 Compliant Variants Available

    October 6, 2025 PULS introduces new 4-channel electronic circuit breakers designed specifically for power distribution in NEC Class 2 circuits, expanding the existing PISA-M series. PISA-M enables the safe distribution of load current into four individual Class 2 circuits. This offers a cost-effective alternative to multiple individually approved NEC Class 2 compliant power supplies, reducing both acquisition costs and… Read More…