Four Questions to Ask when Selecting a Guard Locking Safety Door Switch – Omron

MC Omron Four Qs 1 400

November 12, 2021

 

Machine safety terminology can be challenging, particularly when you need to pick a technology for your risk reduction strategy. This article will cover four key concepts relating to safety interlocks that will help you fully understand the technology before you select a part number. 

Question 1: Do you need power-to-lock or power-to-unlock?

The difference between power-to-lock and power-to-unlock has to do with whether energy is needed to lock or unlock the safety door.

•  Power-to-lock: Energy is required to keep door locked; door is released when energy is removed

•  Power-to-unlock: Door is mechanically locked and can be unlocked by applying energy

For safety reasons, the power-to-unlock principle is preferable. After a proper risk assessment, the power-to-lock principle may also be applied. Accordingly, interlocks with the power-to-unlock principle are typically used for personal protection, while those with the power-to-lock principle are used for process protection.

Question 2: When should you use a safety interlock with guard locking capabilities?

A safety interlock with only a guard interlocking function lets the guard be opened at any time regardless of the function or status of the machine. If the guard is not closed, the interlocking device will generate a stop command that prevents the machine from starting.

The guard interlocking function, also known as guard monitoring, won’t let the machine start while the guard is not closed at any time regardless of machine status. Because of this and the lack of guard locking function, this type of device can be used in applications when the access time is less than the overall system stopping performance.

For machinery where the stopping time of the overall system is higher than the time required to reach a hazardous area, guard interlocking devices with guard locking capabilities are required. This type of device is ideal for applications in which workers risk being exposed to machine overrun, particularly with high-inertia machines.

Access time can be calculated based on the distance between the hazard zone and the guard together with the approach speed. For further information, you can refer to ISO 13855:2010

Safety of machinery — Positioning of safeguards with respect to the approach of the human body. You can learn more about stop time measurement here.

Question 3: What is the holding force?

The holding force refers to the amount of force a guard-locking device can resist without being damaged. Knowing the holding force is important for ensuring that further use of the device will not compromise its integrity to the point where it will fail to close completely.

The holding force specified shall be appropriate to the intended application and construction of the guard. Normally, the machine designer will determine the appropriate holding forced based on the application and refer to any type-C standards as needed.

Question 4: What’s the difference between auxiliary, escape and emergency release?

Knowing the difference between these things is an important consideration for choosing a door switch device. The first one – auxiliary release – refers to the possibility of manually (by means of a tool or a key) releasing the guard lock from the outside in case of a failure. This feature is not suitable for emergency escape if a person is trapped inside a hazardous area.

Emergency release refers to the possibility of releasing the guard lock manually from outside the safeguarded area without any additional tools in the case of an emergency. This feature can be useful when it’s necessary to help trapped people escape or to fight a fire.

The escape release refers to the possibility of manually releasing the door (without the help of guard locking) from inside the safeguarded area. This feature allows people to escape on their own if they’re trapped inside a dangerous area. 

 

For more on Omron’s new D41 Series, click here 

 

Related Articles


Latest Articles

  • Festo Didactic Showcases Technical Education and Training at Hannover Messe 2025

    Festo Didactic Showcases Technical Education and Training at Hannover Messe 2025

    May 20, 2025 By Krystie Johnston Hannover Messe 2025 was an extra special event for Festo. The Festo Group celebrated their 100th anniversary, Festo Canada celebrated their 50th anniversary, and Festo Didactic celebrated their 60th anniversary. Festo Didactic, the education arm of the company, understands how important education is for empowering individuals, driving economic growth,… Read More…

  • EtherCAT in Boost Mode

    May 14, 2025 EtherCAT and PC-based control in test bench technology EtherCAT is by far the fastest Industrial Ethernet technology. Nevertheless, the data acquisition process at Kraus & Naimer’s cam controller test benches called for an even shorter bus cycle. To achieve the required performance, Beckhoff specialists reduced the previous cycle time from 100 µs… Read More…


Featured Article

Revolutionizing Material Movement with Autonomous Mobile Robots

Revolutionizing Material Movement with Autonomous Mobile Robots

In today’s fast-paced manufacturing and logistics industries, the need for efficient and flexible material movement solutions has never been greater. Traditional methods like conveyor systems, forklifts, and manual pushcarts have served us well, but they come with limitations.

That’s why Omron is thrilled to announce the launch of their game-changing MD Series of Autonomous Mobile Robots (AMRs). Read more


Products

  • Electromate to Offer UR7e, UR12e & UR15 Collaborative Robots from Universal Robots

    May 20, 2025 Electromate is expanding its lineup of collaborative automation solutions with the addition of three advanced models from Universal Robots: the UR7e, UR12e, and UR15. These robots provide enhanced options for payload, reach, and precision in demanding collaborative applications. The UR7e delivers a 7 kg payload, 1300 mm reach, and ±0.03 mm repeatability. Positioned between the UR5e and… Read More…

  • Redefining Non-Invasive Temperature Measurement

    May 14, 2025 iTHERM SurfaceLine TM611 provides accuracy and response time comparable to invasive temperature measurement. The non-invasive thermometer iTHERM SurfaceLine TM611 by Endress+Hauser can be used across all industries for a wide range of demanding industrial applications. The surface-mounted thermometer measures process temperature without the risk of leakage and flow disruption. A specially designed… Read More…